65 research outputs found

    The Status of the Pion-Nucleon Coupling Constant

    Get PDF
    A review is given of the various determinations of the different piNN coupling constants in analyses of the low-energy pp, np, pbarp, and pi-p scattering data. The most accurate determinations are in the energy-dependent partial-wave analyses of the NN data. The recommended value is f^2 = 0.075 . A recent determination of f^2 by the Uppsala group from backward np cross sections is shown to be model dependent and inaccurate, and therefore completely uninteresting. We also argue that an accurate determination of f^2 using pp forward dispersion relations is not a realistic option.Comment: 19 pages, latex2e with a4wide.sty, more information is available at http://NN-OnLine.sci.kun.nl . Invited talk at FBXV, Groningen, The Netherlands, July 22-26, 1997. Invited talk at MENU97, Vancouver, B.C., Canada, July 28 - August 1, 199

    Partial-Wave Analyses of all Proton-Proton and Neutron-Proton Data Below 500 MeV

    Get PDF
    In 1993 the Nijmegen group published the results of energy-dependent partial-wave analyses (PWAs) of the nucleon-nucleon (NN) scattering data for laboratory kinetic energies below Tlab=350 MeV (PWA93). In this talk some general aspects, but also the newest developments on the Nijmegen NN PWAs are reported. We have almost finished a new energy-dependent PWA and will discuss some typical aspects of this new PWA; where it differs from PWA93, but also what future developments might be, or should be.Comment: Presentation at the 19th European Conference on Few-Body Problems in Physics, Groningen, The Netherlands, 23-27 August 2004. 4 pages REVTeX4, no figure

    Partial Wave Analyses of the pp data alone and of the np data alone

    Get PDF
    We present results of the Nijmegen partial-wave analyses of all NN scattering data below Tlab = 500 MeV. We have been able to extract for the first time the important np phase shifts for both I = 0 and I = 1 from the np scattering data alone. This allows us to study the charge independence breaking between the pp and np I = 1 phases. In our analyses we obtain for the pp data chi^2_{min}/Ndf = 1.13 and for the np data chi^2_{min}/Ndf = 1.12.Comment: Report THEF-NYM 94.04, 4 pages LaTeX, one PostScript figure appended. Contribution to the 14th Few-Body Conference, May 26 - 31, Williamsburg, V

    On the nucleon self-energy in nuclear matter

    Full text link
    We consider the nucleon self-energy in nuclear matter in the absence of Pauli blocking. It is evaluated using the partial-wave analysis of NNNN scattering data. Our results are compared with that of a realistic calculation to estimate the effect of this blocking. It is also possible to use our results as a check on the realistic calculations.Comment: 6 pages, 2 figure

    The Goldberger-Treiman Discrepancy

    Get PDF
    The Golberger- Treiman discrepancy is related to the asymptotic behaviour of the pionic form factor of the nucleon obtained from baryonic QCD sum rules. The result is .015<=Delta_{GT}<=.022Comment: References updated and minor correction

    The Nucleon-Mass Difference in Chiral Perturbation Theory and Nuclear Forces

    Get PDF
    A new method is developed for treating the effect of the neutron-proton mass difference in isospin-violating nuclear forces. Previous treatments utilized an awkward subtraction scheme to generate these forces. A field redefinition is used to remove that mass difference from the Lagrangian (and hence from asymptotic nucleon states) and replace its effect by effective interactions. Previous calculations of static Class II charge-independence-breaking and Class III charge-symmetry-breaking potentials are verified using the new scheme, which is also used to calculate Class IV nuclear forces. Two-body forces of the latter type are found to be identical to previously obtained results. A novel three-body force is also found. Problems involving Galilean invariance with Class IV one-pion-exchange forces are identified and resolved.Comment: 20 pages, 2 figures, latex - submitted to Physical Review

    Comment on piNN Coupling from High Precision np Charge Exchange at 162 MeV

    Get PDF
    In this updated and expanded version of our delayed Comment we show that the np backward cross section, as presented by the Uppsala group, is seriously flawed (more than 25 sd.). The main reason is the incorrect normalization of the data. We show also that their extrapolation method, used to determine the charged piNN coupling constant, is a factor of about 10 less accurate than claimed by Ericson et al. The large extrapolation error makes the determination of the coupling constant by the Uppsala group totally uninteresting.Comment: 5 pages, latex2e with a4wide.sty. This is an updated and extended version of the Comment published in Phys. Rev. Letters 81, 5253 (1998
    • …
    corecore